5 Must-Have Features in a Acetic Acid Production Process

Author: Liang

Mar. 03, 2025

27

0

0

Acetic Acid (CH3COOH) - Chemistry - BYJU'S

What is Acetic Acid?

Acetic acid is an organic compound with the formula CH3COOH. It is a carboxylic acid consisting of a methyl group that is attached to a carboxyl functional group. The systematic IUPAC name of acetic acid is ethanoic acid and its chemical formula can also be written as C2H4O2. Vinegar is a solution of acetic acid in water and contains between 5% to 20% ethanoic acid by volume. The pungent smell and the sour taste is characteristic of the acetic acid present in it.

If you are looking for more details, kindly visit SL Tec.

An undiluted solution of acetic acid is commonly referred to as glacial acetic acid. It forms crystals which appear like ice at temperatures below 16.6oC. It has a wide range of applications as a polar, protic solvent. In the field of analytical chemistry, glacial acetic acid is widely used in order to estimate substances that are weakly alkaline.

Table of Content

    • Structure of acetic acid
    • Properties of acetic acid
    • Preparations of acetic acid
    • Physical properties of acetic acid
    • Chemical properties of acetic acid
    • Uses of acetic acid
    • Acetic acid as solvent
    • FAQs on acetic acid

Structure of  Acetic acid-CH3COOH

  • It can be observed in the solid-state of acetic acid that there is a chain of molecules wherein individual molecules are connected to each other via hydrogen bonds.
  • Dimers of ethanoic acid in its vapour phase can be found at temperatures approximating to 120o
  • Even in the liquid phase of ethanoic acid, its dimers can be found when it is present in a dilute solution. These dimers are adversely affected by solvents that promote hydrogen bonding.
  • The structure of acetic acid is given by CH3(C=O)OH, or CH3CO2H

The structure of acetic acid is illustrated below.

Structurally, ethanoic acid is the second simplest carboxylic acid (the simplest being formic acid, HCOOH), and is essentially a methyl group with a carboxyl functional group attached to it.

Properties of  Acetic acid-CH3COOH

CH3COOH Acetic Acid Molecular weight/molar mass of CH3COOH 60.052 g/mol Density of Acetamide 1.05 g/cm³ Boiling Point of Acetamide 118 °C Melting Point of Acetamide 16.6 °C

Preparation of  Acetic acid-CH3COOH

Acetic acid is produced industrially via the carbonylation of methanol. The chemical equations for the three steps involved in this process are provided below.

  • CH3OH (methanol) + HI (hydrogen iodide) ' CH3I (methyl iodide intermediate) + H2O
  • CH3I + CO (carbon monoxide) ' CH3COI (acetyl iodide)
  • CH3COI + H2O ' CH3COOH (acetic acid) + HI

Here, a methyl iodide intermediate is generated from the reaction between methanol and hydrogen iodide. This intermediate is then reacted with carbon monoxide and the resulting compound is treated with water to afford the acetic acid product. It is important to note that a metal carbonyl complex must be used as a catalyst for step 2 of this process.

Other Methods of Preparing Acetic Acid

Some naphthalene salts of cobalt, chromium, and manganese can be employed as metal catalysts in the oxidation of acetaldehyde. The chemical equation for this reaction can be written as:

O2 + 2CH3CHO ' 2CH3COOH

Ethylene (C2H4) can be oxidized into acetic acid with the help of a palladium catalyst and a heteropoly acid, as described by the following chemical reaction.

O2 + C2H4 ' CH3COOH

Some anaerobic bacteria have the ability to directly convert sugar into acetic acid.

C6H12O6 ' 3CH3COOH

It can be noted that no ethanol intermediates are formed in the anaerobic fermentation of sugar by these bacteria.

Physical Properties of Acetic Acid

Even though ethanoic acid is considered to be a weak acid, in its concentrated form, it possesses strong corrosive powers and can even attack the human skin if exposed to it. Some general properties of acetic acid are listed below.

  • Ethanoic acid appears to be a colourless liquid and has a pungent smell.
  • At STP, the melting and boiling points of ethanoic acid are 289K and 391K respectively.
  • The molar mass of acetic acid is 60.052 g/mol and its density in the liquid form is 1.049 g.cm-3.
  • The carboxyl functional group in ethanoic acid can cause ionization of the compound, given by the reaction: CH3COOH ' CH3COO' + H+
  • The release of the proton, described by the equilibrium reaction above, is the root cause of the acidic quality of acetic acid.
  • The acid dissociation constant (pKa) of ethanoic acid in a solution of water is 4.76.
  • The conjugate base of acetic acid is acetate, given by CH3COO'.
  • The pH of an ethanoic acid solution of 1.0M concentration is 2.4, which implies that it does not dissociate completely.
  • In its liquid form, acetic acid is a polar, protic solvent, with a dielectric constant of 6.2.

The metabolism of carbohydrates and fats in many animals is centered around the binding of acetic acid to coenzyme A. Generally, this compound is produced via the reaction between methanol and carbon monoxide (carbonylation of methanol).

Chemical Properties of Acetic Acid

The chemical reactions undergone by acetic acid are similar to those of other carboxylic acids. When heated to temperatures above 440oC, this compound undergoes decomposition to yield either methane and carbon dioxide or water and ethenone, as described by the following chemical equations.

If you want to learn more, please visit our website Acetic Acid Production Process.

CH3COOH + Heat ' CO2 + CH4

CH3COOH + Heat ' H2C=C=O + H2O

Some metals such as magnesium, zinc, and iron undergo corrosion when exposed to acetic acid. These reactions result in the formation of acetate salts.

2CH3COOH + Mg ' Mg(CH3COO)2 (magnesium acetate) + H2

The reaction between ethanoic acid and magnesium results in the formation of magnesium acetate and hydrogen gas, as described by the chemical equation provided above.

Other Reactions

Acetic acid reacts with alkalis and forms acetate salts, as described below.

CH3COOH + KOH ' CH3COOK + H2O

This compound also forms acetate salts by reacting with carbonates (along with carbon dioxide and water). Examples of such reactions include:

2CH3COOH + Na2CO3 (sodium carbonate) ' 2CH3COONa + CO2 + H2O

CH3COOH + NaHCO3 (sodium bicarbonate) ' CH3COONa + CO2 + H2O

The reaction between PCl5 and ethanoic acid results in the formation of ethanoyl chloride.

Uses of Acetic Acid

Ethanoic acid is a very important organic compound in the day-to-day lives of humans. Some important uses of acetic acid are listed below.

  • Acetic acid is used as an antiseptic due to its antibacterial qualities
  • The manufacture of rayon fiber involves the use of ethanoic acid.
  • Medically, acetic acid has been employed to treat cancer by its direct injection into the tumour.
  • Being the major constituent of vinegar, it finds use in the pickling of many vegetables.
  • The manufacture of rubber involves the use of ethanoic acid. It is also used in the manufacture of various perfumes.
  • It is widely used in the production of VAM (vinyl acetate monomer).
  • When two molecules of acetic acid undergo a condensation reaction together, the product formed is acetic anhydride.

Acetic Acid as a Solvent

In its liquid state, CH3COOH is a hydrophile (readily dissolves in water) and also a polar, protic solvent. A mixture of acetic acid and water is, in this manner, similar to a mixture of ethanol and water. Acetic acid also forms miscible mixtures with hexane, chloroform, and several oils. However, it does not form miscible mixtures with long-chain alkanes (such as octane).

The desirable solvent properties of acetic acid, along with its ability to form miscible mixtures with both polar and non-polar compounds, make it a very important industrial solvent. It is widely used in the industrial preparation of dimethyl terephthalate (DMT).

Acetic acid | Definition, Formula, Uses, & Facts - Britannica

acetic acid (CH3COOH), the most important of the carboxylic acids. A dilute (approximately 5 percent by volume) solution of acetic acid produced by fermentation and oxidation of natural carbohydrates is called vinegar; a salt, ester, or acylal of acetic acid is called acetate. Industrially, acetic acid is used in the preparation of metal acetates, used in some printing processes; vinyl acetate, employed in the production of plastics; cellulose acetate, used in making photographic films and textiles; and volatile organic esters (such as ethyl and butyl acetates), widely used as solvents for resins, paints, and lacquers. Biologically, acetic acid is an important metabolic intermediate, and it occurs naturally in body fluids and in plant juices.

Acetic acid has been prepared on an industrial scale by air oxidation of acetaldehyde, by oxidation of ethanol (ethyl alcohol), and by oxidation of butane and butene. Today acetic acid is manufactured by a process developed by the chemical company Monsanto in the s; it involves a rhodium-iodine catalyzed carbonylation of methanol (methyl alcohol).

Contact us to discuss your requirements of Methyl Acetate Plant. Our experienced sales team can help you identify the options that best suit your needs.

Comments

Please Join Us to post.

0

0/2000

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us.

Your Name: (required)

Your Email: (required)

Subject:

Your Message: (required)

0/2000