Figure 1: Proportional solenoid control valve
If you want to learn more, please visit our website proportional cartridge valve.
A proportional solenoid control valve is a valve used to control fluid flow rate by varying the size of the flow passage via a restrictor. The regulated flow rate subsequently adjusts parameters affecting a process in a system, mainly level, pressure and temperature. The other minor parameters include: weight, thickness, humidity, density, Ph, color and viscosity.
In an automatic control valve, the restrictor is directed by a signal from a controller called an actuator. A proportional control solenoid valve utilizes a solenoid as an actuator for variable valve positioning.
A direct-operated 2-way standard proportional solenoid valve operates very similar to a direct-operated solenoid valve with the difference that the former operates through a range of valve positioning while the later only provides two switching states (i.e. on/off), Figure 2. In a direct-operated proportional solenoid valve, the plunger is the restrictor.
Figure 2: Functional Principle of direct-acting Solenoid Control Valves
In principle it is possible to proportionally control the plunger with variable DC voltage, however in practice static friction on the guide points of the plunger impairs the sensitivity of the valve, which results in greater hysteresis effects (the phenomenon in which the value of a physical property lags behind changes in the effect causing it). To prevent static friction, the normal inlet signal can be converted into a pulse width modulated voltage signal (PWM) using special control electronics.
Pulse-width modulation (PWM) is a technique often used to allow the control of the power supplied to electrical devices. The average value of voltage (and current) fed to the solenoid is controlled by turning the power switch on and off at a fast rate (Figure 3). This kind of control puts the plunger into a very fast but weak amplitude oscillation. The oscillation puts the plunger in a balanced state which maintains its constant sliding friction. The plungers oscillation motion has no effect on the fluids flow behavior.
The longer the switch is on compared to the off periods, the higher the total power supplied to the solenoid. The term duty cycle describes the proportion of on time, t1, to the cycle duration, T. A low duty cycle corresponds to low power, because the power is off for most of the time. Duty cycle is expressed in percent, 100% being fully on.
Figure 3: PWM Control Signal
The company is the world’s best hydraulic proportional valve supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.
In a normally closed solenoid control valve, with zero current fed to the coil, the spring pushes the plunger downwards to a fully closed position, therefore the valve in maintained close. Applying current to the coil generates a magnetic field to move the plunger upward against the return spring. At 100% duty cycle, power is fully fed to the solenoid and the valve is maintained open. Duty cycles between 0 to 100 percent range proportionally change the flow of the valve. For example, a duty cycle of 50% fed to the solenoid moves the spring and the plunger to 50% of the operating range.
In Continuous flow applications, the choice of appropriate valve size is much more important than with on/off valves. With a high orifice setting the valve can already reach full flow rate at a very small opening (stroke). The remaining stroke is then useless, which impairs resolution and the general control quality of the valve. With an orifice size that is too small on the other hand, the valve wont reach full flow rate. It is recommended that the pressure drop over the valve should be around 30 % of the total pressure drop within the system.
For correct and accurate control functioning, solenoid control valves must be configured and selected according to their special purpose. The most important parameters for selecting a solenoid control valve are, the kV value (given in m3/h) and the applications pressure range. The lower the valves orifice or the stronger the coil, the higher the pressure the valve can shut-off. The highest kV value needed is calculated based on sizing formulas in Figure 4.
Figure 4: where:
QN= Normal Flow rate [m3/hour]
Kv = Hydraulic factor
T = Inlet gas temperature [K]
p1 = Inlet Pressure [bar]
p2 = Outlet Pressure [bar]
dp = Pressure differential [bar]
SG = Specific Gravity (Air = 1)
Based on the calculated kV value and the pressure range of the planned application, a correspondingly appropriate valve type and its required orifice can be determined. Please note that the valves kVs should be greater than the applications kV ideally by approximately 10 %.
Other selection criteria to be considered are maximum operating pressure, media (fluid), power consumption, compatibility of materials, response time, media temperature, operating voltage, and port connection to name a few. For more information regarding these selection criteria please refer to this article, or manufacturers datasheet for the specific product.
Here are some common applications of Proportional Solenoid Control Valve.
Want more information on hydraulic pressure relief valve? Feel free to contact us.
Previous: Unlocking the Power: Key Questions to Ask When Ordering 2 Spool Log Splitter Valve
Next: 10 Questions You Should Know about Industrial Hydraulic Proportional Valve
Comments
Please Join Us to post.
0