What are the uses of NBR?

Author: Helen

May. 13, 2024

181

0

0

Tags: Chemicals

Nitrile rubber - Wikipedia

Chemical compound

The company is the world’s best Carboxyl butyronitrile Latex supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.

Nitrile rubber, also known as nitrile butadiene rubber, NBR, Buna-N, and acrylonitrile butadiene rubber, is a synthetic rubber derived from acrylonitrile (ACN) and butadiene.[1] Trade names include Perbunan, Nipol, Krynac and Europrene. This rubber is unusual in being resistant to oil, fuel, and other chemicals.

NBR is used in the automotive and aeronautical industry to make fuel and oil handling hoses, seals, grommets, and self-sealing fuel tanks. It is also used in the food service, medical, and nuclear industries to make protective gloves. NBR's stability at temperatures from −40 to 108 °C (−40 to 226 °F) makes it an ideal material for aeronautical applications. Nitrile butadiene is also used to produce moulded goods, footwear, adhesives, sealants, sponges, expanded foams, and floor mats.

Its resilience makes NBR a useful material for disposable lab, cleaning, and examination gloves. Nitrile rubber is more resistant than natural rubber to oils and acids, and has superior strength, but has inferior flexibility.

History

[

edit

]

Nitrile rubber was developed in 1931 at BASF and Bayer, then part of chemical conglomerate IG Farben. The first commercial production began in Germany in 1935.[2][3]

IG Farben plant under construction approximately 10 kilometres (6.2 mi) from Auschwitz, 1942

The Buna-Werke was a slave labor factory located near Auschwitz and financed by IG Farben. The raw materials came from the Polish coalfields.[4] Buna Rubber was named by BASF A.G., and through 1988 Buna was a remaining trade name of nitrile rubber held by BASF.

Production

[

edit

]

Krynac 33110 F nitrile rubber bales

Emulsifier (soap), acrylonitrile, butadiene, radical generating activators, and a catalyst are added to polymerization vessels in the production of hot NBR. Water serves as the reaction medium within the vessel. The tanks are heated to 30–40 °C to facilitate the polymerization reaction and to promote branch formation in the polymer. Because several monomers capable of propagating the reaction are involved in the production of nitrile rubber the composition of each polymer can vary (depending on the concentrations of each monomer added to the polymerization tank and the conditions within the tank). There may not be a single repeating unit throughout the entire polymer. For this reason there is also no IUPAC name for the general polymer.

Monomers are usually permitted to react for 5 to 12 hours. Polymerization is allowed to proceed to ~70% conversion before a “shortstop” agent (such as dimethyldithiocarbamate and diethylhydroxylamine) is added to react with (destroy) the remaining free radicals and initiators. Once the resultant latex has “shortstopped”, the unreacted monomers are removed through a steam in a slurry stripper. Recovery of unreacted monomers is close to 100%. After monomer recovery, latex is sent through a series of filters to remove unwanted solids and then sent to the blending tanks where it is stabilized with an antioxidant. The yielded polymer latex is coagulated using calcium nitrate, aluminium sulfate, and other coagulating agents in an aluminium tank. The coagulated substance is then washed and dried into crumb rubber.[3]

The process for the production of cold NBR is very similar to that of hot NBR. Polymerization tanks are cooled to 5–15 °C instead of heating up to 30–40 °C close to ambient temperature (ATC). Under lower temperature conditions, less branching will form on polymers (the amount of branching distinguishes cold NBR from hot NBR).

Properties

[

edit

]

The raw material is typically yellow, although it can also be orange or red tinted, depending on the manufacturer. Its elongation at break is ≥ 300% and possesses a tensile strength of ≥ 10 N/mm2 (10 MPa). NBR has good resistance to mineral oils, vegetable oils, benzene/petrol, ordinary diluted acids and alkalines.

An important factor in the properties of NBR is the ratio of acrylonitrile groups to butadiene groups, referred to as the ACN content. The lower the ACN content, the lower the glass transition temperature; however, the higher the ACN content, the better resistance the polymer will have to nonpolar solvents as mentioned above.[5] Most applications requiring both solvent resistance and low temperature flexibility require an ACN content of 33%.

Property Value Appearance Hardness, Shore A 30–90 Tensile failure stress, ultimate 500-2500 PSI Elongation after fracture in % 600% maximum Density Can be compounded around 1.00 g/cm3

Applications

[

edit

]

A disposable nitrile rubber glove.

The uses of nitrile rubber include powder free disposable non-latex gloves[6], automotive transmission belts, hoses, O-rings, gaskets, oil seals, V belts, synthetic leather, printer's form rollers, and as cable jacketing; NBR latex can also be used in the preparation of adhesives and as a pigment binder.[citation needed]

Unlike polymers meant for ingestion, where small inconsistencies in chemical composition/structure can have a pronounced effect on the body, the general properties of NBR are insensitive to composition. The production process itself is not overly complex; the polymerization, monomer recovery, and coagulation processes require some additives and equipment, but they are typical of the production of most rubbers. The necessary apparatus is simple and easy to obtain.

In January 2008, the European Commission imposed fines totaling €34,230,000 on the Bayer and Zeon groups for fixing prices for nitrile butadiene rubber, in violation of the EU ban on cartels and restrictive business practices (Article 81 of the EC Treaty and Article 53 of the EEA Agreement).[7]


Key Questions to Ask When Ordering pmk oil cas number

Want more information on sbr latex supplier? Feel free to contact us.

Featured content:
Caffeine - Coffee, Tea, Mate, Methylxanthines and ... Hydrogenated nitrile butadiene rubber (HNBR)

[

edit

]

Hydrogenated nitrile butadiene rubber (HNBR) is produced by hydrogenation of NBR. Doing so removes the olefinic groups, which are vulnerable to degradation by various chemicals as well as ozone. Typically, Wilkinson's catalyst is used to promote the hydrogenation. The nitrile groups are unaffected. The degree of hydrogenation determines the kind of vulcanization that can be applied to the polymer.[8]

Also known as highly saturated nitrile (HSN), HNBR is widely known for its physical strength and retention of properties after long-term exposure to heat, oil, and chemicals. Trade names include Zhanber (Lianda Corporation), Therban (Arlanxeo [9]), and Zetpol (Zeon Chemical). It is commonly used to manufacture O-rings for automotive air-conditioning systems.[10] Other applications include timing belts, dampers, servo hoses, membranes, and seals.[11]

Depending on filler selection and loading, HNBR compounds typically have tensile strengths of 20–31 MPa at 23 °C. Compounding techniques allow for HNBR to be used over a broad temperature range, −40 °C to 165 °C, with minimal degradation over long periods of time. For low-temperature performance, low ACN grades should be used; high-temperature performance can be obtained by using highly saturated HNBR grades with white fillers. As a group, HNBR elastomers have excellent resistance to common automotive fluids (e.g., engine oil, coolant, fuel, etc.).

The unique properties and higher temperature rating attributed to HNBR when compared to NBR has resulted in wide adoption of HNBR in automotive, industrial, and assorted, performance-demanding applications. On a volume basis, the automotive market is the largest consumer, using HNBR for a host of dynamic and static seals, hoses, and belts. HNBR has also been widely employed in industrial sealing for oil field exploration and processing, as well as rolls for steel and paper mills.

Carboxylated nitrile butadiene rubber (XNBR)

[

edit

]

An alternative version of NBR is carboxylated nitrile butadiene rubber (XNBR). XNBR is a terpolymer of butadiene, acrylonitrile, and acrylic acid.[12] The presence of the acrylic acid introduces carboxylic acid groups (RCO2H). These groups allow crosslinking through the addition of zinc (Zn2+) additives. The carboxyl groups are present at levels of 10% or less. In addition to these ionic crosslinks, traditional sulfur vulcanization is applied.

See also

[

edit

]

References

[

edit

]

The pros and cons of nitrile rubber, NBR or Buna-N

Nitrile, Buna-N or NBR rubber is a widely used elastomer, thanks in large part to its highly oil & fuel resistant properties and tensile strength. In this article, Martin’s Rubber Company explains more about the properties, applications, pros and cons of this versatile rubber material.   Nitrile rubber is a synthetic rubber copolymer of acrylonitrile (ACN) and butadiene that you may know better under trade names like Nipol, Krynac and Europrene N. Why might you consider specifying nitrile for your application? Let’s find out, with a closer inspection of this rubber material.

What is Buna-N?

Nitrile (also known as NBR rubber and Buna-N) is the seal industry’s most widely used and economical elastomer. This is partly because it displays excellent resistance to petroleum-based oils, fuels, water, alcohols, silicone greases, hydraulic fluids. However, it also has a good balance of desirable working properties like low compression set, high abrasion resistance and high tensile strength.

NBR rubber properties

Nitrile is a family of unsaturated copolymers of 2-propenenitrile and butadiene monomers (1,2-butadiene and 1,3-butadiene). Its physical and chemical properties vary depending on the polymer’s composition of nitrile. The more nitrile there is within the polymer, the higher its resistance to oils but the lower its flexibility. Nitrile rubber is more resistant than natural rubber to oils and acids, and has superior strength, but suffers from inferior flexibility.

Where is nitrile used?

Nitrile rubber is used in a wide variety of applications, such as O-rings, gaskets, oil seals, automotive transmission belts, hoses, V belts, synthetic leather, disposable non-latex gloves, printer’s form rollers and cable jacketing. NBR latex can also be used in the preparation of adhesives or as a pigment binder.

Pros and cons of Buna-N

Nitrile offers the following advantages:

  • Excellent abrasion resistance.
  • Good rebound.
  • Good tear resistance.
  • Good non-polar solvent resistance.
  • Good water resistance.
  • Good oil resistance.
  • Cheaper than fluoroelastomers

Nitrile suffers from the following disadvantages:

  • Poor ozone, sunlight, and weather resistance.
  • Limited high temperature resistance.
  • Poor flame resistance.

Nitrile rubber products from Martin’s Rubber

Speak to one of our advisers today to find out more about our nitrile rubber manufacturing capabilities. We can talk you through your options and give you honest and informed guidance to help you to specify the ideal product for your application. Speak to us today on 023 8022 6330 or email [email protected]. For more information on why nitrile rubber is so popular for heat resistance, see our post: Why Buna N is so popular for use with hydrocarbons.

The post The pros and cons of nitrile rubber, NBR or Buna-N appeared first on Martin’s Rubber Company.

Are you interested in learning more about TURF LATEX? Contact us today to secure an expert consultation!

Comments

Please Join Us to post.

0

0/2000

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us.

Your Name: (required)

Your Email: (required)

Subject:

Your Message: (required)

0/2000